Report of Relevance of Perovskite Module Outdoor Ageing Performance and Indoor UV Degradation Trend

Abstract

Perovskite solar cells have made remarkable progress in laboratory-scale efficiency, positioning them as a promising next-generation photovoltaic technology. However, their long-term operational stability under real-world conditions remains a critical barrier to commercial deployment. This study presents a three-year outdoor field investigation of a micro power station composed of 20 perovskite sub-modules (FA0.9Cs0.1PbI3-based, each measuring 30 cm x 40 cm), deployed in subtropical eastern China and fabricated using scalable, industry-compatible processes. The system was continuously monitored over a three-year period to assess its long-term energy output and operational stability under real-world conditions. In parallel, we developed a spectral-accelerated ageing protocol using a tailored ultraviolet to blue-violet light spectrum, with enhanced intensity in the 390-455 nm range. This method enabled a UV dose of 60 kWh m⁻² at 65 oC to effectively replicate approximately two years of outdoor degradation. The excellent agreement between the UV-aged and field-aged performance validates this as a practical and predictive tool for evaluating the outdoor lifetime of perovskite modules. The sub-modules demonstrated outstanding durability, with only a 2.83% decline in power conversion efficiency after three years of continuous outdoor operation. These findings support the implementation of perovskite-specific reliability testing frameworks and align with emerging international standards such as IEC TS 63624-1, highlighting the importance of tailored UV protocols in preparing perovskite technologies for commercial deployment.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Accepted
14 Jul 2025
First published
07 Aug 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2025, Accepted Manuscript

Report of Relevance of Perovskite Module Outdoor Ageing Performance and Indoor UV Degradation Trend

L. Zhang, D. Liu, G. Du, L. Cai, W. Dai, Y. Dong, Y. Gong, H. Dai, S. Zhang, B. Yan and J. Yao, Nanoscale Adv., 2025, Accepted Manuscript , DOI: 10.1039/D5NA00622H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements