Green-synthesized ZnO nanoparticles for efficient atrazine detection: electrochemical and computational investigations

Abstract

Developing sustainable and efficient methods for detecting environmental contaminants like atrazine (ATZ) is critical for environmental monitoring. This study uses a green approach to synthesise zinc oxide nanoparticles (g-ZnO NPs), employing an aqueous extract of Haldina cordifolia leaves as a natural reducing and stabilizing agent. The synthesized g-ZnO NPs were characterized using techniques such as XRD, TGA, SEM, UV-Vis spectroscopy, XPS, and FTIR to confirm their crystalline structure, morphology, optical properties, and functional groups. These nanoparticles demonstrated excellent sensitivity for the detection of ATZ, a widely used herbicide, via an electrochemical approach. The molecular docking simulations also predicted a favourable affinity of ZnO towards ATZ via hydrogen bonding. The sensor developed exhibited high selectivity for ATZ detection, achieving an LLOD of 0.41 μg mL−1 within a linear range of 0.5 to 3 μM. Its practicality was validated in different types of water where the recovery rates ranged from 87.26% to 94.8% in STP water and from 90.52% to 95.66% in DI water, highlighting their reliability in real-world applications. In this study, Haldina cordifolia is being explored for the first time to synthesize g-ZnO NPs, which are then utilized for the electrochemical detection of ATZ. The biosynthetic approach not only provides an eco-friendly route for nanoparticle synthesis but also enhances the potential for rapid and reliable detection of ATZ in water and STP samples.

Graphical abstract: Green-synthesized ZnO nanoparticles for efficient atrazine detection: electrochemical and computational investigations

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
17 Jun 2025
Accepted
16 Sep 2025
First published
18 Sep 2025
This article is Open Access
Creative Commons BY license

Nanoscale Adv., 2025, Advance Article

Green-synthesized ZnO nanoparticles for efficient atrazine detection: electrochemical and computational investigations

S. Singh, P. N., R. Varshney, A. Panchal, N. Shehata, N. A. Khan, J. Singh and P. C. Ramamurthy, Nanoscale Adv., 2025, Advance Article , DOI: 10.1039/D5NA00595G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements