Effect of the chemical nature of the nitrogen source on the physicochemical and optoelectronic properties of carbon quantum dots (CQDs)
Abstract
This study investigates the influence of the chemical nature of nitrogen sources on the optical properties of Carbon Quantum Dots (CQDs) and evaluates their suitability for various industrial applications through a series of stability tests. Four nitrogen sources, —diethanolamine, diethylamine, ethylenediamine, and 1,2-phenylenediamine— were used to synthesize surface-active CQDs via a one-step microwave-assisted carbonization method. All CQDs exhibited a negative surface charge, ranging from −24.1 to −26.2 mV, indicating excellent colloidal stability at the working pH of 7. Nitrogen was successfully incorporated in all cases; however, CQDs synthesized with ethylenediamine and phenylenediamine showed significantly higher nitrogen contents. This increased incorporation was directly correlated with higher fluorescence quantum yields (QYs), reaching 20.44% with ethylenediamine and 22.61% with phenylenediamine, representing an improvement of up to 220% compared to those synthesized with other nitrogen sources. In addition to the nitrogen content, the carbon structure also influences the QY. Higher proportions of CC bonds contribute to more extensive sp2-conjugated domains, promoting electron delocalization and enhancing both electronic transitions and fluorescence efficiency. However, physical properties, such as particle size and thermal stability, remained unaffected by the choice of the nitrogen precursor. The CQDs demonstrated excellent thermal stability, ionic strength resistance, and long-term fluorescence retention, maintaining up to 90% of their initial fluorescence intensity under various storage conditions, making them suitable for use in harsh environments. However, an extremely acidic pH had the most detrimental effect, causing fluorescence intensity losses of up to 80% in CQD-phenylenediamine and CQD-diethylamine. These findings highlight the important role of nitrogen in enhancing the optoelectronic properties of the CQDs. Appropriate selection of the nitrogen source can significantly improve the fluorescence performance and optimize the response for practical applications.
- This article is part of the themed collection: High throughput synthesis, characterisation and optimisation of nanomaterials