Issue 19, 2025

Advanced nanofiber therapy: multifunctional silver-nanoparticles@polyacrylonitrile incorporating Syzygium guineense extracts for enhanced in vivo diabetic wound-healing and robust antimicrobial defense

Abstract

Green-synthesized silver nanoparticles (Bio-Ag NPs) derived from Syzygium guineense offer an eco-friendly, cost-effective platform with potent antibacterial activity and biocompatibility. These nanoparticles were integrated into electrospun polyacrylonitrile (PAN) nanofibers, creating Bio-Ag NPs@PAN nanocomposites for enhanced diabetic wound healing applications. The synthesized materials were systematically characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The antibacterial efficacy of Bio-Ag NPs was evaluated against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, demonstrating inhibition zones of 17.0 ± 0.310 mm and 16.3 ± 0.290 mm, respectively. Additionally, the antioxidant potential of Bio-Ag NPs was confirmed using the DPPH assay, highlighting their physiological benefits. In vivo studies on a diabetic rat revealed the remarkable wound-healing efficiency of Bio-Ag NPs@PAN nanofibers. Over 3, 7, 11, and 14 days, these nanofibers significantly enhanced wound closure by promoting re-epithelialization, fibroblast proliferation, and extracellular matrix formation. Notably, Bio-Ag NPs(B)@PAN nanofibers accelerated diabetic wound healing by 52%, 68%, 88%, and 99% on days 3, 7, 11, and 14, respectively, with increased collagen deposition. This study demonstrates the multifunctional capabilities of Bio-Ag NPs@PAN nanofibers in addressing the challenges associated with diabetic wound healing, offering faster recovery and improved wound closure. Furthermore, the findings underscore the potent antioxidant and antibacterial properties of Bio-Ag NPs, emphasizing their potential for diverse biomedical applications.

Graphical abstract: Advanced nanofiber therapy: multifunctional silver-nanoparticles@polyacrylonitrile incorporating Syzygium guineense extracts for enhanced in vivo diabetic wound-healing and robust antimicrobial defense

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
11 Apr 2025
Accepted
09 Jul 2025
First published
22 Aug 2025
This article is Open Access
Creative Commons BY license

Nanoscale Adv., 2025,7, 6158-6178

Advanced nanofiber therapy: multifunctional silver-nanoparticles@polyacrylonitrile incorporating Syzygium guineense extracts for enhanced in vivo diabetic wound-healing and robust antimicrobial defense

T. A. Begeno, Y. Zhang, A. M. Yessuf, T. S. Kassa, A. M. Salama, W. Wang and Z. Du, Nanoscale Adv., 2025, 7, 6158 DOI: 10.1039/D5NA00343A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements