A stepwise responsive Au-SS-PEG/Sor/ATPaptamer/LHRH-MPGΔNLS drug delivery vector system for overcoming drug resistance in immunotherapy of hepatocellular carcinoma

Abstract

Despite the progress made in novel immunotherapy for hepatocellular carcinoma (HCC), drug resistance remains a challenging problem. In this study, we developed a stepwise nanodrug delivery system, known as Au-SS-PEG/Sor/ATPaptamer/LHRH-MPGΔNLS, to adapt to the high concentrations of glutathione (GSH) and adenine nucleoside triphosphate/adenosines (ATP/ADO) found in cancer cells and the tumor microenvironment (TME). This system utilizes novel Au nanoclusters conjugated with disulfide-linked PEG as vectors to transport sorafenib (Sor) and an ATP-binding nucleic acid aptamer (ATPapt). It can enter HCC cells through luteinizing hormone-releasing hormone (LHRH)-MPGΔNLS (LM). Within the cells, the disulfide bonds of the nanoclusters are cleaved by the high levels of GSH, leading to the release of Sor/ATPapt. This release can be further triggered by ATP/ADO, resulting in a stepwise drug release mechanism. Furthermore, this nanodrug system has exhibited the ability to overcome αPD-1 resistance in HCC tumors. In summary, our novel drug delivery system demonstrates a dramatic anti-HCC effect and holds great potential for treating HCC patients.

Graphical abstract: A stepwise responsive Au-SS-PEG/Sor/ATPaptamer/LHRH-MPGΔNLS drug delivery vector system for overcoming drug resistance in immunotherapy of hepatocellular carcinoma

Supplementary files

Article information

Article type
Paper
Submitted
14 Jan 2025
Accepted
16 Aug 2025
First published
10 Sep 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2025, Advance Article

A stepwise responsive Au-SS-PEG/Sor/ATPaptamer/LHRH-MPGΔNLS drug delivery vector system for overcoming drug resistance in immunotherapy of hepatocellular carcinoma

M. Tong, G. Chen, Y. Dong, Y. Pan, Y. Xue and D. Li, Nanoscale Adv., 2025, Advance Article , DOI: 10.1039/D5NA00056D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements