Controlled bioreduction of silver ions to nanosized particles on a porous magnetic-biopolymer of carboxymethyl cellulose, Fe3O4/CMC-Ag NPs, serving as a sustainable nanocatalyst

Abstract

A magnetic-biopolymer composite of carboxymethyl cellulose (CMC), designated as Fe3O4@CMC, was synthesized featuring remarkable stability and an active surface with a green biosynthetic method. This composite was engineered to serve as a substrate for stabilizing silver nanoparticles (Ag NPs) with enhanced functional properties. The catalytic efficacy of the nanocatalyst, incorporating Ag NPs at concentrations of 3%, 7%, and 10%, was evaluated for the reduction of the toxic compound 4-nitrophenol to the beneficial 4-aminophenol. Among the tested configurations, the formulation containing 10% silver nanoparticles, in conjunction with Euphorbia plant extract as a bioreducing agent, exhibited the highest reduction efficiency and favorable reaction kinetics, rendering it the optimal choice. The apparent rate constant (Kapp) was assessed by fine-tuning the catalyst parameters, while the reaction mechanism was further elucidated by adjusting the concentrations of NaBH4 and 4-nitrophenol. Notably, the catalyst demonstrated good stability over five consecutive reduction cycles and could be easily retrieved from the reaction mixture using an external magnet.

Graphical abstract: Controlled bioreduction of silver ions to nanosized particles on a porous magnetic-biopolymer of carboxymethyl cellulose, Fe3O4/CMC-Ag NPs, serving as a sustainable nanocatalyst

Article information

Article type
Paper
Submitted
19 Oct 2024
Accepted
11 Dec 2024
First published
11 Dec 2024
This article is Open Access
Creative Commons BY license

Nanoscale Adv., 2025, Advance Article

Controlled bioreduction of silver ions to nanosized particles on a porous magnetic-biopolymer of carboxymethyl cellulose, Fe3O4/CMC-Ag NPs, serving as a sustainable nanocatalyst

M. Azizi, M. Jafari and S. Rostamnia, Nanoscale Adv., 2025, Advance Article , DOI: 10.1039/D4NA00866A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements