Issue 6, 2025

Experimental quantification of impact force and energy for mechanical activation in vibratory ball mills

Abstract

Mechanochemistry has been shown to provide a greener alternative to chemical synthesis; however, challenges in establishing clear relationships between chemical reaction yields and operational reactor parameters, such as milling frequency, milling ball material properties, vessel material properties, and reactor geometries used in a mechanochemical synthesis, make optimizing reactor efficiency difficult. This study presents a force model that relates these reactor parameters to quantifiable impact forces within a vibratory ball mill. To validate this force model, we developed a method for integrated, real-time measurement of force ensembles in the reaction vessel by embedding piezoresistive sensors with fast response to capture impact dynamics at various milling frequencies and operational settings. We measured force using preground NaCl at different fill ratios and compared it to an adjusted Hertzian contact mechanics force model with fill factor. We found agreement between the measured and modeled impact force. At the macroscale, impact acts as an ensemble of forces dynamically applied to the reactants. By simulating the mechanical activation of an illustrative mechanochemical system with known energetics, we show that there is little to no difference in effect between using the mean impact force and force ensemble on the kinetics of a straightforward mechanochemical reaction. We also demonstrate kinetic energy quantification in the Knoevenagel condensation reaction of vanillin and barbituric acid to understand what fraction of kinetic energy goes toward mechanical activation. We observed that the energetics of high-frequency milling for this reaction system entail diminishing returns, reinforcing the notion that there can be an optimal balance between collision intensity, resulting impact forces, and productive energy usage. The developed toolset and models provide a framework for understanding mechanochemical activation in vibratory ball mills and optimizing reaction parameters for scale-up to other reactors.

Graphical abstract: Experimental quantification of impact force and energy for mechanical activation in vibratory ball mills

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
30 Apr 2025
Accepted
27 Aug 2025
First published
19 Sep 2025
This article is Open Access
Creative Commons BY license

RSC Mechanochem., 2025,2, 911-922

Experimental quantification of impact force and energy for mechanical activation in vibratory ball mills

E. Nwoye, K. Floyd, J. Batteas and J. Felts, RSC Mechanochem., 2025, 2, 911 DOI: 10.1039/D5MR00059A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements