Mechanochemical conversion of elemental sulfur into functional sulfur nanomaterials for promising applications

Abstract

This review highlights the growing role of mechanochemistry in the synthesis and functionalization of sulfur-based nanomaterials. It begins with a conceptual and historical overview of mechanochemical processes, emphasizing how mechanical energy enables selective bond cleavage, defect formation, and structural transformations in solids. Particular focus is placed on the mechanochemical synthesis of sulfur nanomaterials, where mechanical activation overcomes the inherent chemical inertness of elemental sulfur, promoting the formation of nanodots and other nanostructures. Subsequent sections explore the structural, optical, and photophysical properties of these materials, including light absorption, photoluminescence (PL), optical stability, time-resolved photoluminescence (TRPL), and circularly polarized luminescence (CPL). These properties are strongly influenced by stress-induced defects and crystallinity, which are hallmark features of the mechanochemical approach. The review further surveys a range of application areas such as sensing, catalysis, and energy conversion, where sulfur nanomaterials exhibit promising performance owing to their unique physicochemical properties. In conclusion, we address current challenges, including defect control and the need for a deeper mechanistic understanding, and propose future directions for expanding the scope and enhancing the utility of mechanochemical methods in nanochemistry. Overall, this work underscores the potential of mechanochemistry not only as a green, solvent-free synthesis strategy but also as a powerful platform for uncovering novel functionalities in sulfur-based nanomaterials.

Article information

Article type
Review Article
Submitted
18 Apr 2025
Accepted
28 Aug 2025
First published
29 Aug 2025
This article is Open Access
Creative Commons BY-NC license

RSC Mechanochem., 2025, Accepted Manuscript

Mechanochemical conversion of elemental sulfur into functional sulfur nanomaterials for promising applications

H. Hasan, F. Arshad and M. P. Sk, RSC Mechanochem., 2025, Accepted Manuscript , DOI: 10.1039/D5MR00051C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements