Geometric Multi-color Message Passing Graph Neural Networks for Blood-brain Barrier Permeability Prediction

Abstract

Accurate prediction of blood-brain barrier permeability (BBBP) is essential for central nervous system (CNS) drug development. While graph neural networks (GNNs) have advanced molecular property prediction, they often rely on molecular topology and neglect the threedimensional geometric information crucial for modeling transport mechanisms. This paper introduces the geometric multi-color message-passing graph neural network (GMC-MPNN), a novel framework that enhances standard message-passing architectures by explicitly incorporating atomic-level geometric features and long-range interactions. Our model constructs weighted colored subgraphs based on atom types to capture the spatial relationships and chemical context that govern BBB permeability. We evaluated GMC-MPNN on three benchmark datasets for both classification and regression tasks, using rigorous scaffold-based splitting to ensure a robust assessment of generalization. The results demonstrate that GMC-MPNN consistently outperforms existing state-of-the-art models, achieving superior performance in both classifying compounds as permeable/non-permeable (AUC-ROC of 0.9704 and 0.9685) and in regressing continuous permeability values (RMSE of 0.4609, Pearson correlation of 0.7759). An ablation study further quantified the impact of specific atom-pair interactions, revealing that the model's predictive power derives from its ability to learn from both common and rare, but chemically significant, functional motifs. By integrating spatial geometry into the graph representation, GMC-MPNN sets a new performance benchmark and offers a more accurate and generalizable tool for drug discovery pipelines.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
19 Sep 2025
Accepted
26 Nov 2025
First published
05 Dec 2025

Mol. Syst. Des. Eng., 2025, Accepted Manuscript

Geometric Multi-color Message Passing Graph Neural Networks for Blood-brain Barrier Permeability Prediction

T. Nguyen, M. M. Rana, F. Tasnim Mukta, D. D. Nguyen and C. Zhan, Mol. Syst. Des. Eng., 2025, Accepted Manuscript , DOI: 10.1039/D5ME00175G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements