Toward understanding biomolecular materials comprising intrinsically disordered proteins via simulation and experiment
Abstract
Intrinsically disordered proteins (IDPs) yield solutions with tunable phase transition behavior and have been widely applied in designing stimuli-responsive materials. Understanding interactions between amino acid residues of the IDP sequence is critical to designing new IDP-based materials with selective phase behavior, assembly, and mechanical properties. The lack of structure for this class of proteins complicates accurate prediction of their molecular-scale behavior. In this review, recent progress is presented in the development and application of simulation methods to describe the behavior of IDPs. Results for elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs) are highlighted, focusing on studies that compare simulation results with experimental findings.
- This article is part of the themed collection: Festschrift in honour of Juan de Pablo’s 60th birthday