Harnessing photodynamic therapy for programmed cell death: the central role and contributions of metal complexes as next generation photosensitizers
Abstract
A fundamental biological mechanism, programmed cell death (PCD), is essential for tissue homeostasis, immunological control, and development. Its dysregulation is a characteristic of many diseases in multicellular organisms, including cancer, where unchecked proliferation is made possible by evading cell death. Therefore, one of the main tenets of contemporary anticancer therapies is the restoration or induction of PCD in cancer cells. One potential, least invasive method among these is photodynamic treatment (PDT). PDT uses light-activatable photosensitisers, which cause cancer cells to explode with reactive oxygen species (ROS) when exposed to light. These ROS harm important biomolecules, throw off the cellular redox equilibrium, and cause cells to die. PDT-induced cell death was previously believed to be mostly caused by autophagy, necrosis, or apoptosis. Recent research, however, has shown that it can trigger a wider range of unconventional cell death pathways. ROS can cause ferroptosis by oxidising membrane lipids, fragmenting DNA, and lowering intracellular glutathione (GSH) levels. Similarly, necroptosis or pyroptosis can result from severe oxidative stress activating death receptor signalling. Sometimes, in response, cells use survival strategies like autophagy, which can also lead to cell death. This review explores these new, unconventional methods of cell death and how PDT can be used to take advantage of them. Next-generation photosensitisers based on iridium (Ir), ruthenium (Ru), and rhenium (Re) complexes are given special attention because they provide deep tissue penetration, improved photostability, and adjustable ROS production. Their incorporation into PDT has revolutionary potential for improving cancer treatment precision and conquering therapeutic resistance.

Please wait while we load your content...