Issue 11, 2025

Development of a nitric oxide-releasing cephalexin-based hybrid compound for enhanced antimicrobial efficacy and biofilm disruption

Abstract

Biofilm formation on medical devices and the rise of antibiotic resistance have undermined conventional antibiotics such as cephalexin (CEX), which is effective against Gram-positive infections but has limited activity against Gram-negative pathogens and biofilms. To overcome these limitations, we developed a hybrid nitric oxide (NO)-releasing conjugate (SNAP_CEX) by covalently attaching the NO donor S-nitroso-N-acetylpenicillamine (SNAP) to CEX. SNAP_CEX exhibited a sustained NO release profile over 30 days, indicating enhanced stability compared to SNAP's rapid degradation, even though the Griess assay showed NO release from SNAP over 30 days. The hybrid maintained strong antibacterial activity against Staphylococcus aureus (S. aureus; MIC50 = 7 μM vs. 2.5 μM for CEX) and dramatically improved efficacy against Pseudomonas aeruginosa (P. aeruginosa; MIC50 = 3 mM vs. 16 mM for CEX). SNAP_CEX also significantly disrupted established biofilms, reducing S. aureus biofilm biomass by ∼75% (vs. ∼33% by CEX) and viable cells by ∼99%, and achieving ∼67% biomass reduction and 77% killing in P. aeruginosa biofilms (vs. ∼25% and 18% by CEX). These effects demonstrate that SNAP_CEX combines NO's biofilm-disruptive action with antibiotic therapy to combat biofilm-associated resistant infections, while remaining cytocompatible at therapeutic concentrations.

Graphical abstract: Development of a nitric oxide-releasing cephalexin-based hybrid compound for enhanced antimicrobial efficacy and biofilm disruption

Supplementary files

Article information

Article type
Research Article
Submitted
10 Jul 2025
Accepted
23 Aug 2025
First published
03 Sep 2025
This article is Open Access
Creative Commons BY-NC license

RSC Med. Chem., 2025,16, 5333-5340

Development of a nitric oxide-releasing cephalexin-based hybrid compound for enhanced antimicrobial efficacy and biofilm disruption

S. Kumar, M. C. Parker, Y. Wu, A. Marx, H. Handa and E. J. Brisbois, RSC Med. Chem., 2025, 16, 5333 DOI: 10.1039/D5MD00602C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements