Electrostatic interactions influence diazabicyclooctane inhibitor potency against OXA-48-like β-lactamases
Abstract
Carbapenemases, β-lactamases hydrolysing carbapenem antibiotics, challenge treatment of multi-drug resistant bacteria. The OXA-48 carbapenemase is widely disseminated in Enterobacterales, necessitating new treatments for producer strains. Diazabicyclooctane (DBO) inhibitors, including avibactam and nacubactam, act on a wide range of enzymes to overcome β-lactamase-mediated resistance. Here we investigate avibactam and nacubactam activities towards OXA-48 and two variants, OXA-163 and OXA-405, with deletions in the β5 – β6 loop neighbouring the active site that modify activity towards different β-lactam classes. Nacubactam is c. 80-fold less potent than avibactam towards OXA-48, but this difference reduces in OXA-163 and OXA-405. Crystal structures and molecular dynamics simulations reveal electrostatic repulsion between Arg214 on the OXA-48 β5 – β6 active-site loop and nacubactam, but not avibactam, effects absent from simulations of OXA-163 and OXA-405, which lack Arg214. Crystallographic and mass spectrometry data demonstrate that all three enzymes support desulfation of bound DBOs. These data indicate that interactions with Arg214 affect DBO potency, suggesting that sequence variation in OXA-48-like β-lactamases affects reactivity towards inhibitors as well as β-lactam substrates.