Allosteric targeting of RIPK1: discovery of novel inhibitors via parallel virtual screening and structure-guided optimization
Abstract
Receptor-interacting serine/threonine protein-kinase 1 (RIPK1) is a critical signalling protein that regulates inflammation and cell death in response to TNF signalling. Inhibiting RIPK1 kinase activity prevents neuronal cell death in various animal models, making it a promising therapeutic target for neurodegenerative, inflammatory, and autoimmune disorders. To identify novel allosteric RIPK1 inhibitors, we used a parallel virtual screening strategy that employed structure-based pharmacophore, shape-based, and fuzzy pharmacophore similarity approaches. Structure-guided optimization enabled by X-ray crystallography led to the discovery of a potent and selective piperidinecarboxamide inhibitor with an acceptable pharmacokinetic (PK) profile and limited brain exposure. This work highlights the effectiveness of virtual screening, followed by structure-guided optimization, in identifying progressible allosteric kinase inhibitors.
- This article is part of the themed collection: Kinases