Pharmacophore-guided optimization of the hit compound CTN1122 in the design of promising imidazo[1,2-a]pyrazine derivatives targeting the casein kinase 1 for antileishmanial therapy†
Abstract
Our research group identified CTN1122, an imidazo[1,2-a]pyrazine derivative, as a promising antileishmanial agent targeting intramacrophage amastigotes of Leishmania major and Leishmania donovani. CTN1122 selectively inhibits Leishmania casein kinase 1 (L-CK1.2) with a favorable safety profile. Docking studies based on a homology model highlighted key pharmacophoric elements: a 4-pyridyl group at C3, crucial for hydrogen bonding with leucine 90 in the ATP-binding site, and a 4-fluorophenyl moiety at C2, fitting into a hydrophobic pocket. In order to validate these findings, 14 analogs were synthesized with targeted modifications on the imidazo[1,2-a]pyrazine core structure. Three probed the C8 position, three evaluated the impact of C2 substitution, six assessed the C3 4-pyridyl group, and two combined changes at C8 and C3. The study confirmed the critical role of C2 and C3 substituents, as their absence significantly reduced L-CK1.2 inhibition and antileishmanial activity. Additionally, the nitrogen's position within the pyridine ring at C3 proved essential: compound 23, with a meta-pyridyl group, was inactive. Notably, compound 30 exhibited the highest antileishmanial in vitro potency (IC50 = 0.20 μM for L. major; 0.16 μM for L. donovani) alongside enhanced L-CK1.2 inhibition (IC50 = 0.384 μM), with no significant mammalian cytotoxicity.