Unravelling the potency of the 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile scaffold with S-arylamide hybrids as PIM-1 kinase inhibitors: synthesis, biological activity and in silico studies

Abstract

PIM-1 is a type of serine/threonine kinase that plays a crucial role in controlling several vital processes, including proliferation and apoptosis. New synthetic S-amide tetrahydropyrimidinone derivatives were designed and synthesized as PIM-1 inhibitors with potential anticancer activity. Several biochemical assays were performed for anticancer assessment, including PIM-1 inhibitory assays, MTT, apoptosis and cell cycle, gene expression analysis, c-MYC analysis, and ATPase inhibitory assays. Compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibited strong in vitro broad antiproliferative activity against MCF-7, DU-145, and PC-3, with a relatively higher SI index suggesting minimal cytotoxicity to normal cells. Furthermore, these compounds induced mixed late apoptosis and necrosis with cell cycle arrest at the G2/M phase. Moreover, compounds 8b, 8f, 8g, 8k, and 8l showed potent inhibitory action against PIM-1 kinase, with corresponding IC50 values of 660, 909, 373, 518, and 501 nM. In silico prediction studies of physiochemical properties, molecular dynamics, and induced fit docking studies were performed for these compounds to explain their potent biological activity. In conclusion, new pyrimidinone compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibit potential PIM-1 inhibitory activity and can be used as promising scaffolds for further optimization of new leads with selective PIM-inhibitors and anticancer activity.

Graphical abstract: Unravelling the potency of the 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile scaffold with S-arylamide hybrids as PIM-1 kinase inhibitors: synthesis, biological activity and in silico studies

Supplementary files

Article information

Article type
Research Article
Submitted
08 Jan 2025
Accepted
11 Mar 2025
First published
28 Mar 2025

RSC Med. Chem., 2025, Advance Article

Unravelling the potency of the 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile scaffold with S-arylamide hybrids as PIM-1 kinase inhibitors: synthesis, biological activity and in silico studies

S. R. Abd El Hadi, M. A. Eldinary, A. Ghith, H. Haffez, A. Salman and G. A. Sayed, RSC Med. Chem., 2025, Advance Article , DOI: 10.1039/D5MD00021A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements