Issue 19, 2025

Carbazole-linked through-space TADF emitters for OLEDs: tuning photophysics via molecular architecture and exciton dynamics

Abstract

Thermally activated delayed fluorescence (TADF) offers a promising route to highly efficient organic light-emitting diodes (OLEDs), yet conventional D–A–D and A–D–A architectures often suffer from conformational flexibility, leading to multiple singlet excited states and enhanced non-radiative decay. These effects compromise both emission efficiency and color purity. While multi-resonant TADF (MR-TADF) systems provide improved rigidity, their planar structures favor π–π stacking, causing aggregation-induced quenching (ACQ). This study presents a molecular design strategy integrating a carbazole unit as a rigid, non-planar bridge to mitigate intramolecular rotation and suppress ACQ by disrupting parallel stacking. A set of 21 such D–A–D and A–D–A type molecules was computationally designed and analyzed. The optimized structures exhibit spatially separated frontier orbitals, resulting in small singlet–triplet energy gaps (ΔEST), fast radiative and reverse intersystem crossing rates, and near-unity photoluminescence quantum yields (PLQYs). Exciton dynamics simulations further confirm efficient TADF behavior, while molecular dynamics trajectories reveal conformational stability and through-space charge transfer characteristics. Notably, A1D3A1 achieves an exceptionally small ΔEST of 0.001 eV and the highest kTADF of 1.34 × 106 s−1, enabling rapid triplet harvesting, while D1A2D3 combines high oscillator strength with efficient TADF dynamics. These results demonstrate that subtle architectural tuning can yield substantial performance improvements, highlighting carbazole-bridged TADF emitters as a pathway toward stable, high-efficiency OLED materials.

Graphical abstract: Carbazole-linked through-space TADF emitters for OLEDs: tuning photophysics via molecular architecture and exciton dynamics

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
09 Jul 2025
Accepted
26 Aug 2025
First published
28 Aug 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2025,6, 6978-6990

Carbazole-linked through-space TADF emitters for OLEDs: tuning photophysics via molecular architecture and exciton dynamics

Sanyam, N. Tejiyan and A. Mondal, Mater. Adv., 2025, 6, 6978 DOI: 10.1039/D5MA00731C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements