Issue 18, 2025

From an insulating Zn-porphyrin metallacage to electrically conducting inclusion complexes featuring extended π-donor/acceptor stacks

Abstract

π-Donor/Acceptor charge-transfer (CT) interactions between redox-complementary π-systems often give rise to non-native optical and electronic properties that are beneficial for modern electronics and energy technologies. However, the formation of extended supramolecular π-donor/acceptor stacks capable of long-range charge transport requires ingenious design strategies that can help reinforce otherwise weak π-donor/acceptor noncovalent interactions. Herein, we demonstrate that a large tetragonal prismatic metal–organic cage (MOC28+) having two parallel π-donor tetrakis(4-carboxyphenyl)-Zn-porphyrin (ZnTCPP) faces located ∼14 Å apart can accommodate up to three redox-complementary planar aromatic guests (either three π-acceptor guests or two π-acceptors surrounding one π-donor guest) between the ZnTCPP faces, forming extended π-donor/acceptor stacks. While empty MOC28+ behaves as an insulator due to the lack of charge delocalization across its large cavity, its inclusion complexes saturated with π-acidic hexaazatriphenylene hexacarbonitrile (HATHCN) and hexacyanotriphenylene (HCTP) displayed noticeably higher electrical conductivity (8.7 × 10−6 and 1.3 × 10−6 S m−1, respectively) owing to more facile charge transport through the π-donor/acceptor stacks composed of the π-acidic guests intercalated between the ZnTCPP faces. Thus, this work demonstrates that tetragonal prismatic metallacages with two parallel electroactive faces can facilitate the creation of extended π-donor/acceptor stacks by encapsulating redox-complementary planar guests, which in turn facilitates through-space charge delocalization, generating non-native electrical conductivity.

Graphical abstract: From an insulating Zn-porphyrin metallacage to electrically conducting inclusion complexes featuring extended π-donor/acceptor stacks

Supplementary files

Article information

Article type
Paper
Submitted
18 Jun 2025
Accepted
06 Aug 2025
First published
22 Aug 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2025,6, 6567-6574

From an insulating Zn-porphyrin metallacage to electrically conducting inclusion complexes featuring extended π-donor/acceptor stacks

E. Thibodeaux, P. A. Benavides, E. Barger, R. Sachdeva and S. Saha, Mater. Adv., 2025, 6, 6567 DOI: 10.1039/D5MA00653H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements