Revolutionizing environmental clean-up: novel CORN-MOF-2/PVDF composite membranes for the removal of multi-pollutants

Abstract

The increasing prevalence of complex multi-pollutants, including heavy metals, dyes, and pharmaceutical residues, in wastewater streams demands advanced materials capable of efficient and selective separation. This study addresses the critical challenge of removal of diverse pollutants by developing CORN-MOF-2/PVDF composite membranes, in which novel CORN-MOF-2(Ce) was functionalized into a PVDF matrix by a nonsolvent-induced phase-inversion method (NIPS). The introduced MOF enhanced the hydrophilicity of the resulting membranes and provided a higher permeability of 434.95 L m−2 h−1 bar−1. Membrane performance was evaluated through a series of filtration tests using synthetic wastewater containing heavy metal ions, dyes and pharmaceutical compounds. The CORN-MOF-2/PVDF membranes transitioned into a more selective interface, leading to absolute rejection of a wide range of pollutants—99% for dopamine hydrochloride (DP), Cr2O72−, Alcian blue (AB), and Congo red (CR). Furthermore, the study extended to investigate the removal efficiency of the optimized membrane under different pH conditions, achieving optimal performance at neutral pH. A combination of size exclusion, affinity-based bonding, and charge-based interactions was followed to attain superior rejection rates. The simultaneous removal of multiple pollutants from the aqueous system demonstrates the superior versatility and efficiency of the fabricated membranes in handling complex multi-component contaminations. The treated water resulting from this work adheres to the WHO's standards for safe water. Additionally, antifouling studies showed a flux recovery ratio of >95% after multiple cycles.

Graphical abstract: Revolutionizing environmental clean-up: novel CORN-MOF-2/PVDF composite membranes for the removal of multi-pollutants

Supplementary files

Article information

Article type
Paper
Submitted
03 Jun 2025
Accepted
11 Aug 2025
First published
28 Aug 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2025, Advance Article

Revolutionizing environmental clean-up: novel CORN-MOF-2/PVDF composite membranes for the removal of multi-pollutants

U. Nellur and M. Padaki, Mater. Adv., 2025, Advance Article , DOI: 10.1039/D5MA00581G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements