Issue 14, 2025

Exploring compositional versatility of perovskite-like Cs3(Bi,Sb)2X9 (X = Cl, Br, I) compounds by high-throughput experimentation

Abstract

A high-throughput compositional screening of perovskite-like Cs3M2X9 double salts (M = Bi and Sb and X = Cl, Br, and I) allows independent variation of the M and X components, yielding one hundred single-phase products within a general synthetic approach that combines engineered precipitation of chloride and bromide precursors and their anion exchange conversion into more complex halide derivatives. The X variation at a fixed M = Bi3+ yields various single-phase Cs3Bi2X9 compounds with X = Cl, Cl + Br, Br, Br + I, and Cl + Br + I. The anion exchange in chlorides with Br + I combinations produces stable Cs3Bi2X9 compounds with all three halides simultaneously present in the lattice, and Cl, Br, and I contents varied in the ranges of ca. 40–90%, 10–60%, and 30–90%, respectively. The presence of bromide, even as a residue, enables the co-existence of Cl and I, and dictates the trigonal symmetry, in contrast to the hexagonal symmetry typical for Cs3M2I9. The compounds with X = Cl + Br + I show band gap variations in the range of 2.0–2.5 eV and linear dependencies on the iodide content and lattice parameters. The simultaneous variation of the X and M sites yields single-phase Cs3(Bi,Sb)2X9 solid-solution compounds with tailorable X and a Bi/Sb ratio varied from 0 to 1.0. All Bi/Sb families reveal a band bowing effect, with the band gaps of mixed Bi/Sb compounds being lower than those of Bi- and Sb-only counterparts. The bowing parameter depends on the X subsystem, decreasing from 0.80 eV for Cl to 0.60 eV for Cl + Br and 0.40–0.45 eV for Br and Br + I, indicating that chemical variations in the mixed Bi/Sb lattices, rather than local disorders or lattice strains, govern the band-bowing behavior.

Graphical abstract: Exploring compositional versatility of perovskite-like Cs3(Bi,Sb)2X9 (X = Cl, Br, I) compounds by high-throughput experimentation

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
13 May 2025
Accepted
05 Jun 2025
First published
06 Jun 2025
This article is Open Access
Creative Commons BY license

Mater. Adv., 2025,6, 4847-4856

Exploring compositional versatility of perovskite-like Cs3(Bi,Sb)2X9 (X = Cl, Br, I) compounds by high-throughput experimentation

O. Stroyuk, O. Raievska, S. Kinge, J. Hauch and C. J. Brabec, Mater. Adv., 2025, 6, 4847 DOI: 10.1039/D5MA00479A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements