Optical and photothermal properties of CsWO3 nanoparticles endow poly(dimethylsiloxane) fluidic lenses with non-invasive thermo-optic and thermo-expansion effects for fluorescence imaging

Abstract

The capabilities of CsWO3 nanoparticles to transmit in the visible range from 400 nm to 650 nm and undergo strong near-infrared photothermal conversion from 750 nm to 2400 nm may make them functional materials in the fabrication of focus-tunable optical lenses. In this research, the noninvasive focal length tuning of a poly(dimethylsiloxane) (PDMS)-structured fluidic lens by near-infrared irradiated cesium tungsten oxide nanoparticles (CsWO3 NPs), which generates heat and induces photothermal and thermo-optic effects on PDMS, was explored. The temperature-dependent mechanical property of PDMS and the stoichiometric, structural and photothermal properties of CsWO3 NPs were characterized. Young's modulus ranged from 4.5 MPa to 3.7 MPa as the temperature of the PDMS sample increased from 25 °C to 48 °C and allowed a delicate tuning of the fluidic lens’ front focal length from 21.02 mm to 20.89 mm when the near-infrared (NIR) optical power density increased from 0 mW cm−2 to 226 mW cm−2 while retaining the concentric shape of the focused beam spot. The fluidic lens was then incorporated into the detection arm of a light sheet fluorescence microscope, and it successfully captured the contrast-enhanced images of the fluorescein-coated CsWO3 NPs.

Graphical abstract: Optical and photothermal properties of CsWO3 nanoparticles endow poly(dimethylsiloxane) fluidic lenses with non-invasive thermo-optic and thermo-expansion effects for fluorescence imaging

Supplementary files

Article information

Article type
Paper
Submitted
05 May 2025
Accepted
08 Aug 2025
First published
28 Aug 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2025, Advance Article

Optical and photothermal properties of CsWO3 nanoparticles endow poly(dimethylsiloxane) fluidic lenses with non-invasive thermo-optic and thermo-expansion effects for fluorescence imaging

Y. Cheng, S. Kao, M. Ho, J. Pan and P. Hu, Mater. Adv., 2025, Advance Article , DOI: 10.1039/D5MA00435G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements