Issue 14, 2025

Photo-crosslinked persistent micelle templates with near universal solvent compatibility

Abstract

The controlled preparation of porous nanomaterials from block polymer templates is important for diverse applications from energy devices to optical coatings and sorbents. The architectural dimensions determine the overall performance for many of these applications, however the independent control of these dimensions has remained limited to a narrow range of solvent conditions for kinetically trapped (“persistent”) micelle templates. Polymers with a photo-reactive chemistry are shown to enable cross-linked micelle templates that universally remain persistent under diverse solvent conditions. Specifically, poly(poly(ethylene glycol methacrylate))-b-poly(butyl methacrylate-co-coumarin methacrylate) (OBC) was prepared by RAFT polymerization and the resulting micelles were crosslinked with UV light (X-OBC). TEM images revealed that crosslinking in MeOH-only led to a mixture of micelles and unimers whereas crosslinking in MeOH–H2O led to pure micelles. Absorbance measurements indicated 50% coumarin dimerization (crosslinking) occurred after 180 min of UV exposure. The near universal solvent compatibility of X-OBC persistent micelles is demonstrated with DLS measurements in toluene, DCM, DMF, THF, EtOH, and MeOH, whereas OBC is shown to release unimers in DCM, DMF, THF, and toluene, or precipitate from EtOH due to a morphology change. Spectroscopic testing of micelle crosslinking occurred at each templating step. Micelle entrapment was also validated with SAXS and SEM measurements after nanomaterial templating where X-OBC enabled sample series with constant pore size whereas OBC did not. Furthermore, the results uniquely show X-OBC micelle persistence when processed from non-selective solvents. These results highlight how molecular engineering and tailored processing can enable the generalized synthesis of controlled porous nanomaterials.

Graphical abstract: Photo-crosslinked persistent micelle templates with near universal solvent compatibility

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2025
Accepted
09 Jun 2025
First published
18 Jun 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2025,6, 4881-4892

Photo-crosslinked persistent micelle templates with near universal solvent compatibility

C. S. Collins, M. Zhang, C. Sturgill, C. X. Ruff, B. Melton and M. Stefik, Mater. Adv., 2025, 6, 4881 DOI: 10.1039/D5MA00327J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements