Issue 8, 2025

Advanced scientific information mining using LLM-driven approaches in layered cathode materials for sodium-ion batteries

Abstract

Materials informatics (MI) has emerged as a powerful paradigm for accelerating materials discovery and development through data-driven approaches. The scarcity of structured materials data, however, remains a critical bottleneck in minimizing the error between experimental and predicted values. Here, we present an advanced large language model (LLM) framework for building a comprehensive materials database of layered metal oxide (LMO) cathode materials in sodium-ion batteries (SIBs). By implementing optimized advanced retrieval-augmented generation techniques, including the tree of clarity (ToC) methodology, our system achieved an accuracy of 0.8861 and an F1-score of 0.9371 in extracting structured materials data from open-source publications. The framework successfully processed 312 publications, rapidly extracting 945 data points related to material composition, crystallinity, operating voltage, and electrode composition at approximately 20 seconds per paper. This automated approach to materials data acquisition demonstrated here is expected to significantly accelerate the development of comprehensive materials databases and enable rapid materials discovery through MI.

Graphical abstract: Advanced scientific information mining using LLM-driven approaches in layered cathode materials for sodium-ion batteries

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
03 Jan 2025
Accepted
27 Feb 2025
First published
04 Mar 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2025,6, 2543-2548

Advanced scientific information mining using LLM-driven approaches in layered cathode materials for sodium-ion batteries

Y. Na, J. J. Kim, C. Park, J. Hwang, C. Kim, H. Lee and J. Lee, Mater. Adv., 2025, 6, 2543 DOI: 10.1039/D5MA00004A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements