Issue 3, 2025

Diesel soot oxidation over Mn–Pr–Ce oxide catalysts: structural changes and the impact of Mn doping

Abstract

The soot oxidation activity of manganese-doped ceria-praseodymium catalysts, synthesized via solution combustion synthesis, was evaluated. The analyses performed with XRD and Raman spectroscopy indicated that the Mn-doped CP catalysts displayed the typical fluorite structure of CeO2. The addition of Mn to CP led to a reduction in crystallite size from 14 nm to below 10 nm. The F2g Raman active mode of fluorite-structured Ce and the oxygen vacancies resulting from the addition of Mn and Pr (bands ∼ 560 cm−1 to 580 cm−1) were consistently observed across all Mn-doped CP catalysts. 15 and 20 Mn-CP exhibited an additional secondary phase identified as Mn2O3. The analysis of BET surface area and BJH pore size revealed that the Mn-doped CP catalysts exhibited both micro and mesoporous characteristics. The H2-TPR and O2-TPD profiles indicated enhanced reducibility resulting from the incorporation of Mn and Pr into CeO2-doped catalysts. The improved T50 (365 ± 1 °C) for the 5 Mn-CP catalytic system is primarily due to its increased specific surface area of 45 m2 g−1 and the presence of active surface adsorbed oxygen species identified in the XPS and O2-TPD studies. 5 Mn-CP exhibited the lowest activation energy value compared to all other Mn-doped catalysts.

Graphical abstract: Diesel soot oxidation over Mn–Pr–Ce oxide catalysts: structural changes and the impact of Mn doping

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
25 Sep 2024
Accepted
02 Jan 2025
First published
13 Jan 2025
This article is Open Access
Creative Commons BY license

Mater. Adv., 2025,6, 1131-1143

Diesel soot oxidation over Mn–Pr–Ce oxide catalysts: structural changes and the impact of Mn doping

S. S. Patil, H. P. Dasari, R. Shirasangi and H. Dasari, Mater. Adv., 2025, 6, 1131 DOI: 10.1039/D4MA00968A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements