Issue 14, 2025

Substitution-induced changes in the structure, vibrational, and magnetic properties of BiFeO3

Abstract

To address practical progress and prospective applications of BiFeO3, particularly in the development of data storage devices, we substituted it with the perovskite BaTi0.9Zr0.1O3 to form the system (1 − x)BiFeO3-(x)BaTi0.9Zr0.1O3, limiting x to the range of 0–0.4. We prepared these compositions using the solid-state reaction method, highlighting the correlation between their structure, vibrational properties, and magnetic response. X-ray diffraction and Raman scattering spectra reveal the structural transition from the R3c rhombohedral to Pm[3 with combining macron]m cubic with increasing the content of BaTi0.9Zr0.1O3. Mössbauer spectroscopy investigation indicates that the substitution of Fe3+ ions with Ti4+ and Zr4+ weakens the Dzyaloshinskii–Moriya (DM) interaction. Thus, the DM interaction becomes subordinate to the exchange interaction in the G-type antiferromagnetic order of Fe3+ ions within the BFO structure, potentially suppressing the cycloidal spin configuration in the samples x = 0.1, 0.2, and 0.3. The mean hyperfine magnetic fields decreased with the increasing (x) of BaTi0.9Zr0.1O3, and a paramagnetic phase was observed for x = 0.4. The decrease of quadrupole splitting/shift (ΔEQ/2ε) for x = 0.1, 0.2, and 0.3 indicates a transition toward a higher-symmetry environment around Fe3+ due to the substitution. This result proves the structural transition from the R3c rhombohedral to Pm[3 with combining macron]m cubic observed by X-ray diffraction and Raman spectroscopy as the content of BaTi0.9Zr0.1O3 increases. Using Rietveld refinement data of X-ray diffraction, the calculation of the tilt angle (ω) reveals a decrease in the level of the rhombohedral structure. For compositions exceeding x = 0.1, the decrease in ω with the substitution rate leads to a reduction in remanent magnetization. However, the enhancement of remanent magnetization (Mr ∼ 0.34 emu g−1) was observed for x = 0.1. Moreover, hysteresis loops for the compositions x = 0.1 and 0.2 exhibit smaller field coercivity at 2 K compared to 300 K, which could identify the presence of magnetoelectric coupling in this system.

Graphical abstract: Substitution-induced changes in the structure, vibrational, and magnetic properties of BiFeO3

Article information

Article type
Paper
Submitted
09 Aug 2024
Accepted
10 Jun 2025
First published
19 Jun 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2025,6, 4893-4904

Substitution-induced changes in the structure, vibrational, and magnetic properties of BiFeO3

I. Kallel, Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, N. Randrianantoandro and E. K. Hlil, Mater. Adv., 2025, 6, 4893 DOI: 10.1039/D4MA00805G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements