Issue 2, 2025

Novel polymer/halloysite composites with high halloysite content and remarkable mechanical strength

Abstract

Halloysite nanotubes (HNTs) are of interest for use in nanocomposites due to their unique cylindrical structure and resulting properties. Various polymer/HNT composites have been studied, but generally these composites have HNTs as a minor component. Here, we report novel polymer/HNT composites with high HNT content facilitated by strong hydrogen-bonding interactions between the polymer and HNTs. These composites with 50–75 wt% HNTs were prepared by in situ polymerization reactions of mixtures comprising HNTs, acrylic acid, triethylene glycol dimethacrylate, potassium persulfate, and water, followed by drying. The chemical structure of composites was verified by Fourier-transform infrared spectroscopy (FTIR). The high dispersity of HNTs in the poly(acrylic acid)-based matrix was demonstrated by scanning electron microscopy (SEM). Studies of mechanical properties illustrated greatly enhanced mechanical strength of the composites relative to the pure polymer matrix, with the highest flexural strength, microhardness, and ultimate tensile strength achieved for the composite with 66.7 wt% HNTs. Thus, the incorporation of high mass fractions of HNTs in a polymer matrix can offer potential benefits for applications requiring superior mechanical properties, in addition to other functions endowed by either HNTs or the polymer matrix. Differential scanning calorimetry (DSC) characterization did not show evidence of a glass transition in the polymer matrices of these composites, and thermogravimetric analysis (TGA) revealed increased thermal stability of the composites relative to the matrices. Swelling tests indicated that the swelling capacity is primarily determined by the amount of polymer present in the composite, and the presence of HNTs may facilitate mass transfer of water within the polymer matrix.

Graphical abstract: Novel polymer/halloysite composites with high halloysite content and remarkable mechanical strength

Article information

Article type
Paper
Submitted
14 Oct 2024
Accepted
20 Oct 2024
First published
20 Nov 2024
This article is Open Access
Creative Commons BY-NC license

RSC Appl. Interfaces, 2025,2, 410-419

Novel polymer/halloysite composites with high halloysite content and remarkable mechanical strength

M. Zhang, C. Sabatini, K. Chen, S. Makowka, R. Hu, M. Swihart and C. Cheng, RSC Appl. Interfaces, 2025, 2, 410 DOI: 10.1039/D4LF00356J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements