Programmable Cell Culture Chips for Topographical Manipulation of Living Cells

Abstract

The micro-morphological characteristics of biomaterial surfaces play a critical role in influencing cell proliferation, adhesion, and differentiation. However, the underlying mechanisms by which surface features modulate cellular behavior remain inadequately understood. Moreover, current surface designs intended for cell regulation tend to be overly simplistic, often failing to meet the dual requirements of high-precision fabrication and structural versatility. Here, we propose a programmable cell culture chip based on femtosecond laser maskless optical projection lithography (Fs-MOPL) technology to modulate the cell behavior. The as-fabricated chip exhibits high structural fidelity and uniformity. Surface treatment with O2 plasma followed by poly-D-lysine (PDL) coating enhances hydrophilicity, cell adhesion and growth. We have investigated the migration, adhesion, and morphological changes of 786-O cells on scaffold with varied line spacing, column diameter and hole size using immunofluorescence staining and confocal fluorescence microscopy. The cells cultured on linear array structures display elongated, oriented actin stress fibers, while column and hole array structures influence focal adhesion distribution and cellular tension. Biocompatibility characterization further confirms the chip's suitability for cell culture applications. Our findings highlight the potential of programmable cell culture chips to mimic complex in vivo microenvironments, offering a multifunctional platform for studying cell behavior and advancing biomedical research.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
19 Aug 2025
Accepted
30 Sep 2025
First published
30 Sep 2025

Lab Chip, 2025, Accepted Manuscript

Programmable Cell Culture Chips for Topographical Manipulation of Living Cells

X. Wu, J. Zhang, M. Niu, F. Bin, Q. Duan, J. Liu, X. Dong and M. Zheng, Lab Chip, 2025, Accepted Manuscript , DOI: 10.1039/D5LC00803D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements