Hybrid GC Platform: A Micro Gas Chromatography System with a Simple Configuration for Low-Concentration VOCs Analysis

Abstract

A compact hybrid gas chromatography (GC) platform was developed by integrating a previously reported hybrid µ-GC column chip (hybrid chip) and a commercial photoionization detector. The hybrid chip enabled both gas preconcentration and separation in a single device, allowing for a highly compact and simple platform design with a volume of 0.62 L. With a sample volume of 40.8 mL and an analysis time of 20 minutes, it achieved detection limits of 19.3, 22.8, 30.1, and 24.4 ppb for benzene, toluene, ethylbenzene, and ortho-xylene, respectively. The linear ranges were 0.25–1 ppm for benzene and toluene, 0.25–1.5 ppm for ethylbenzene, and 0.25–2 ppm for ortho-xylene. The peak capacity ranged from 5.34 to 8.81, with full width at half height between 0.22 and 0.5 min. Importantly, the detection limit for benzene was below US workplace air concentration limits set by the American Conference on Governmental Industrial Hygienists (ACGIH) and National Institute for Occupational Safety and Health (NIOSH), demonstrating the platform’s potential for indoor air monitoring. Furthermore, portability was enhanced through the integration with a battery and carrier gas filter pack. The platform consumed 2.65 W during analysis (20 minutes), and assuming one cycle consists of 20 minutes of analysis and 10 minutes of stand-by operation, the system could theoretically operate for 70 cycles (35 hours) on a single charge. Field testing with classroom and laboratory air samples confirmed the potential applicability of the platform. In addition, partial qualitative separations were achieved for alkanes, alcohols, aldehydes, and ketones, suggesting broader utility in fields beyond indoor air monitoring.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
14 Mar 2025
Accepted
06 Jun 2025
First published
10 Jun 2025

Lab Chip, 2025, Accepted Manuscript

Hybrid GC Platform: A Micro Gas Chromatography System with a Simple Configuration for Low-Concentration VOCs Analysis

Y. Lee, S. Lee, W. Jang, J. Lee, Y. Choi and S. Lim, Lab Chip, 2025, Accepted Manuscript , DOI: 10.1039/D5LC00268K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements