An acoustic levitation platform for high-content histological analysis of 3D tissue culture

Abstract

Miniaturized three-dimensional (3D) cell culture systems, in particular organoids and spheroids, hold great potential for studying morphogenesis, disease modeling, and drug discovery. However, sub-cellular resolution 3D imaging of these biological samples remains a challenge. Histology, the gold standard for ex vivo microscopic interrogation of tissue anatomy, may address this challenge once the associated techniques are adapted. Due to their small size and delicate structure, organoids must be embedded in a supporting hydrogel. The histological sections have low information content because the distribution of the organoids within the gel is not controlled. To address this issue, we introduce an acoustic micromanipulation platform that concentrates and aligns organoids within a histology-compatible hydrogel block. Utilizing an array of micromachined lead zirconate titanate (PZT) transducers, the platform generates localised and precisely controlled acoustic standing waves to levitate organoids to a prescribed plane and fix their positions within a polyethylene glycol diacrylate (PEGDA)-gelatine hydrogel. Organoids from different culture conditions can be co-embedded in a traceable fashion with the use of a custom-design hydrogel grid. Our results demonstrate that more than 70% of spheroids can be positioned within a 150 μm-thick hydrogel block, substantially increasing the information content of histology sections. The platform's versatility, scalability, and ease of use will make histological assessment accessible to every life science laboratory.

Graphical abstract: An acoustic levitation platform for high-content histological analysis of 3D tissue culture

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
14 Feb 2025
Accepted
28 Apr 2025
First published
29 Apr 2025
This article is Open Access
Creative Commons BY license

Lab Chip, 2025, Advance Article

An acoustic levitation platform for high-content histological analysis of 3D tissue culture

E. Vuille-dit-Bille, C. L. Fonta, S. Heub, S. Boder-Pasche, M. S. Sakar and G. Weder, Lab Chip, 2025, Advance Article , DOI: 10.1039/D5LC00153F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements