Issue 8, 2025

Visualization investigation of fluid transport in multiscale porous media for CO2-EOR based on microfluidic technology

Abstract

During oil extraction, the recovery rates of traditional methods have been gradually declining. CO2-enhanced oil recovery (CO2-EOR) has been utilized since the 1960s; however, in recent years, it has garnered renewed attention due to its environmental benefits and economic advantages. However, there are few reports addressing multiphase mass transfer in micro- and nano-scale pores. This study employs microfluidic technology to simulate the pore structures of real reservoir rocks. A fracture–matrix porous medium chip with a network channel structure and a microscale porous medium chip featuring multiple pore-throat ratios were designed to investigate the effects of cross-scale interactions, network channel geometries, and the Jamin effect on fluid flow patterns and oil recovery rates during both CO2 miscible and CO2 immiscible flooding processes. The experiments demonstrated that the cross-scale effect facilitates the rapid achievement of a 100% recovery rate during CO2 miscible flooding, but exacerbates gas channeling during CO2 immiscible flooding, resulting in a decreased recovery rate. The Jamin effect becomes more pronounced with increasing pore-throat ratios, and the substantial capillary resistance generated by this effect in regions with high pore-throat ratios significantly reduces the rate of increase in recovery during CO2 miscible flooding, as well as the overall recovery rate during CO2 immiscible flooding. This study enhances the understanding of multiphase mass transfer in reservoir conditions and provides critical insights for optimizing CO2-EOR strategies, ultimately contributing to more efficient oil recovery and supporting sustainable practices in the energy sector.

Graphical abstract: Visualization investigation of fluid transport in multiscale porous media for CO2-EOR based on microfluidic technology

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
07 Jan 2025
Accepted
19 Mar 2025
First published
25 Mar 2025

Lab Chip, 2025,25, 1981-1992

Visualization investigation of fluid transport in multiscale porous media for CO2-EOR based on microfluidic technology

J. Wang, J. Sun, J. Shi and B. Bao, Lab Chip, 2025, 25, 1981 DOI: 10.1039/D5LC00019J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements