Issue 4, 2025

Highly efficient combination of multiple single cells using a deterministic single-cell combinatorial reactor

Abstract

Compartmentalization of multiple single cells and/or single microbeads holds significant potential for advanced biological research including single-cell transcriptome analysis or cell–cell interactions. To ensure reliable analysis and prevent misinterpretation, it is essential to achieve highly efficient pairing or combining of single objects. In this paper, we introduce a novel microfluidic device coupled with a multilayer interconnect Si/SiO2 control circuit, named the deterministic single-cell combinatorial reactor (DSCR) device, for the highly efficient combination of multiple single cells. The deterministic combination of multiple single cells is realized by sequentially introducing and trapping each cell population into designated trap-wells within each DSCR. These cell-sized trap-wells, created by etching the SiO2 passivation layer, generate a highly localized electric field that facilitates deterministic single-cell trapping. The device's multilayer interconnection of electrodes enables the sequential operation of each trap-well, allowing precise trapping of each cell population into designated trap-wells within an array of combinatorial reactors. We demonstrated the feasibility of the DSCR by sequentially trapping three distinct groups of PC3 cells, each stained with a different fluorescent dye (blue, green, or red). This method achieved a 93 ± 2% pairing efficiency for two cell populations and an 82 ± 7% combination efficiency for three cell populations. Our innovative system offers promising applications for analyzing multiple cell–cell communications and combinatorial indexing of single cells.

Graphical abstract: Highly efficient combination of multiple single cells using a deterministic single-cell combinatorial reactor

Supplementary files

Article information

Article type
Paper
Submitted
13 Nov 2024
Accepted
09 Dec 2024
First published
10 Dec 2024

Lab Chip, 2025,25, 476-486

Highly efficient combination of multiple single cells using a deterministic single-cell combinatorial reactor

M. Yoshida, S. Tago, K. Iizuka, T. Fujii and S. H. Kim, Lab Chip, 2025, 25, 476 DOI: 10.1039/D4LC00951G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements