In-Petri-dish acoustic vortex tweezers

Abstract

Acoustic tweezers, with the capability to manipulate tiny objects without physical contact, hold substantial potential for biomedical and biological research. However, current acoustic tweezers platforms face challenges in precise, selective, and multi-degree-of-freedom (multi-DoF) manipulation of objects in Petri dishes, making it difficult to integrate them into typical laboratory workflows. This paper presents an acoustic vortex tweezers platform that enables contactless, precise, multi-DoF, and multifunctional manipulation of micro-to-millimeter-scale objects within a Petri dish. The platform features an acoustic holography-based module, which uses a holographic lens to transform acoustic waves and generate a focused acoustic vortex beam. This beam carries sufficient energy to propagate through a Petri dish's bottom wall, creating a ring-shape intensity field for trapping tiny objects. Using lenses encoded with different topological charge numbers, vortex beams with varying diameters can be generated, allowing for trapping various-sized objects. Additionally, in combination with a 3-DoF linear motion module, our integrated platform enables high-resolution translation of acoustically trapped objects along complex paths. We experimentally demonstrated our platform's diverse capabilities, including concentrating micro-objects, trapping flowing micro-objects to create an agglomerate, translating a microparticle and an agglomerate along complex paths, as well as trapping, rotating and translating a zebrafish larva in horizontal and vertical postures. With these capabilities, we expect our in-Petri-dish acoustic vortex tweezers to emerge as a valuable tool for the contactless, high-resolution, programmable handling of tiny biomaterials in biomedical and biological research.

Graphical abstract: In-Petri-dish acoustic vortex tweezers

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2024
Accepted
20 Jun 2025
First published
01 Jul 2025
This article is Open Access
Creative Commons BY-NC license

Lab Chip, 2025, Advance Article

In-Petri-dish acoustic vortex tweezers

T. Li, Y. Du, B. Cai, M. R. Brooks, C. Qiu, Z. Wang, J. Li, L. Bo, Y. A. Pan and Z. Tian, Lab Chip, 2025, Advance Article , DOI: 10.1039/D4LC00799A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements