Elevating single-particle encapsulation in droplet microfluidics by utilizing surface acoustic wave and flow control

Abstract

Target particle encapsulation is crucial in droplet microfluidics for high-throughput applications like single-cell sequencing and drug screening. However, it faces limitations, with encapsulation rates of only 10% to 30% due to suspension density and the inherent functionality of the chip being restricted by the Poisson distribution. This leads to reagent waste and reduced effectiveness in applications requiring ultra-high multiplexing or extensive particle analysis, due to the massive empty droplets. Here we propose a droplet microfluidic system integrating surface acoustic wave (SAW) and sheath flow control. Suspensions of varying concentrations within the channel are initially pre-focused by sheath fluid, and then acoustically focused into a linear arrangement by SAW. Spacing between particles can be regulated by modulating the sheath fluid, ensuring sequential encapsulation of cells or beads in individual droplets. Thermal shock generated by the SAW, particle and droplet frequency, and particle encapsulation ratio are all elaborately evaluated. The results demonstrate that our system reaches an exciting single-bead packing efficiency of up to 78%, and achieves a packing rate of more than 60% for both high and low concentrations of solutions for polystyrene microspheres, magnetic beads and H22 cells, 6 times higher than the theoretical upper limit of the conventional method and 1.8 times higher than the Poisson distribution. More importantly, our system is designed to be free of structural and parametric constraints, which is quite important in future practical application. Thus, our on-chip particle focusing control method and droplet microfluidic system provide great potential in biological applications needing a high single-particle encapsulation ratio in limited partitions, such as ultra-high multiplex digital biomolecular detection, single-cell analysis, drug screening, and single exosome detection.

Graphical abstract: Elevating single-particle encapsulation in droplet microfluidics by utilizing surface acoustic wave and flow control

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
22 Sep 2024
Accepted
23 Apr 2025
First published
29 Apr 2025

Lab Chip, 2025, Advance Article

Elevating single-particle encapsulation in droplet microfluidics by utilizing surface acoustic wave and flow control

C. He, H. Zhuo, C. Yang, J. Wang, X. Jiang, F. Li, C. Lin, H. Yang, T. Yong, X. Yang, Z. Liu, Y. Ma, L. Nie, G. Liao and T. Shi, Lab Chip, 2025, Advance Article , DOI: 10.1039/D4LC00787E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements