Issue 4, 2025

Integrated bacterial cell lysis and DNA extraction using paper-based isotachophoresis

Abstract

Bacterial infections remain a global threat, particularly in low-resource settings, where access to accurate and timely diagnosis is limited. Point-of-care nucleic acid amplification tests have shown great promise in addressing this challenge. However, their dependence on complex traditional sample preparation methods remains a major challenge. To address this limitation, we present a paper-based sample preparation device that integrates bacterial cell lysis, DNA purification, and concentration using an electrokinetic technique called isotachophoresis (ITP). This is the first device that (i) integrates electrochemical bacterial lysis with ITP and (ii) demonstrates the focusing of whole bacterial genomic DNA (gDNA) in paper. Characterization with buffers showed that the paper-based ITP sample preparation module (p-ITPrep) concentrated bacterial gDNA with an average concentration factor of 12×, and DNA could be extracted from a sample containing as few as 102 CFU mL−1Mycobacterium smegmatis (Msm). From complex biological matrices – human saliva, human blood serum, and artificial urine – p-ITPrep extracted DNA from samples containing 102 CFU Msm per mL saliva or artificial urine and 103 CFU Msm per mL serum within 20 min. The extraction procedure involved only 3 user steps, in contrast to conventional solid phase extraction kits that require more than 10 user steps. p-ITPrep may provide a simple, inexpensive, and versatile alternative to conventional multi-step nucleic acid extraction protocols for point-of-care diagnostics.

Graphical abstract: Integrated bacterial cell lysis and DNA extraction using paper-based isotachophoresis

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2023
Accepted
24 Jan 2025
First published
27 Jan 2025

Lab Chip, 2025,25, 686-697

Integrated bacterial cell lysis and DNA extraction using paper-based isotachophoresis

S. Soni and B. J. Toley, Lab Chip, 2025, 25, 686 DOI: 10.1039/D3LC00604B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements