Online correction of matrix effects for boron isotope analysis in tourmaline using nano-secondary-ion mass spectrometry
Abstract
Boron isotopes serve as a effective tracers for fluid-related geological processes. Tourmaline is a boron-rich mineral, making it an ideal medium for B isotopic studies. However, matrix effects, particularly instrumental mass fractionation (IMF), can significantly affect the accuracy of B isotope analysis performed using secondary ion mass spectrometry (SIMS). Conventional correction methods typically rely on offline coupling of major element contents determined via electron probe microanalysis (EPMA) and B isotope ratios measured using SIMS; however, these methods are time-consuming and susceptible to spatial mismatch. This study introduces an online matrix effect correction method using NanoSIMS, eliminating the need for EPMA data. B isotope analysis revealed a strong linear correlation (R2 > 0.93) between IMF and the FeOT + MnO content of tourmaline, suggesting that Fe/Mn substitution is likely the primary factor governing IMF. Subsequently, an online matrix correction for the B isotope ratio was established by simultaneously measuring the 58Fe+/10B+, 55Mn+/10B+ ratios and the B isotope ratio (11B+/10B+), utilizing a binary linear regression model. Nine tourmaline reference materials with diverse compositions were analyzed and corrected using this online correction method, yielding δ11B values that are consistent with the recommended reference values within the uncertainty range. Overall, this approach enhances analytical efficiency and reliability, enabling high-precision B isotope tracing in complex geological processes.

Please wait while we load your content...