Enhanced lithium extraction from brine using surface-modified LiMn2O4 electrode with nanoparticle islands†
Abstract
Lithium is an important raw material for new energy-powered vehicles, and ensuring its supply is of great significance for global green and sustainable development. Salt lake brine is the main lithium resource, but the separation of Li+ from coexisting metals poses a major challenge. In this work, a lithium-storing metal oxide SnO2 nanoparticle island-modified LiMn2O4 electrode material is designed to endow LiMn2O4 with higher lithium extraction capacity and cycling stability. The SnO2 nanoparticle islands effectively mitigate stress during the charge–discharge process of LiMn2O4, thereby enhancing cycling stability and promoting the diffusion of Li+. The lithium adsorption capacity of the LiMn2O4 electrode material modified with SnO2 nanoparticles reaches 19.76 mg g−1 within 1 hour, which is 1.7 times higher than that of LiMn2O4 (11.45 mg g−1). The LiMn2O4 electrode material modified with SnO2 nanoparticles shows good selectivity and cycling stability for the separation of lithium ions.
Keywords: Electrochemical adsorption; Extraction lithium; Surface modified; LiMn2O4.