The recovery of valuable metals from spent ternary lithium-ion batteries by repurposing the pyrolysis gas
Abstract
To establish a recycling process for spent lithium-ion batteries (LIBs) suitable for industrialization, minimizing energy consumption and simplifying the recycling process are critical. Herein, we propose a roasting reduction method to recover valuable metals from spent LIBs by repurposing the pyrolysis gas of the LIBs. The pyrolysis gas serves as a reducing agent, while the carbon-based materials in the LIBs (graphite, electrolytes, separators, and binders) act as a carbon resource during the roasting process. The results show that the spent LiNi0.65Co0.15Mn0.2O2 (LNCM) cell can be completely reduced to Li, Ni, Co, Mn, or their respective compounds using pyrolysis gas at 550 °C. Through a combined environmentally friendly process of water leaching and citric acid leaching, 91.62% of Li, 98.71% of Ni, 99.46% of Co, and 98.51% of Mn are recovered from the roasted products. These recovery efficiencies are higher than that of carbothermal reduction using carbon-based materials in an inert atmosphere. The synergistic effect between the reductive gases in the pyrolysis gas and the carbon resource is a key factor enabling the reduction process of LNCM at lower temperatures compared to conventional carbothermic reduction under an oxygen-free atmosphere. Therefore, the recycling method based on the in situ reduction-leaching of LIBs is environmentally friendly, economical, and has promising applications in industrial scale-up.