Influence of hemicellulose and lignin on the effect of drying of cellulose and the subsequent enzymatic hydrolysis

Abstract

Transporting water contained in lignocellulosic biomass is both costly and impractical. Thus, the inevitable increase in the utilization of biomass derived products such as hygroscopic nanocellulose and dissolving pulp cellulose prior to downstream chemical/enzymatic processing will necessitate a greater understanding of the potential drying induced impacts on the reactivity/accessibility of cellulose. To assess the effects of hemicellulose and lignin on the drying behavior and enzymatic hydrolysis of cellulose, corn stover was subjected to steam pretreatment, bleaching, and LiBr·3H2O treatment to produce model substrates rich in holocellulose, cellulose-lignin, pure cellulose and the original composition. The model substrates were freeze-dried, air-dried, and oven-dried, and were subjected to Simons’ staining (both wet and dried samples) and N2 adsorption analysis (dried samples) to assess cellulose accessibility and surface area. Drying-induced hornification reduced cellulose accessibility, with freeze-drying preserving the structure more effectively than oven or air drying. The presence of hemicellulose and lignin influenced drying-induced hornification by significantly increasing cellulose accessibility. Hemicellulose removal was as effective as lignin removal in enhancing enzymatic hydrolysis at low enzyme loading, but its presence played a key role in mitigating drying effects. Additionally, cellulose properties, such as the degree of polymerization, affected drying responses, as seen in the reduction of hydrolysis yield in endoglucanase-treated dissolving pulp.

Graphical abstract: Influence of hemicellulose and lignin on the effect of drying of cellulose and the subsequent enzymatic hydrolysis

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2025
Accepted
27 Jun 2025
First published
27 Jun 2025
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2025, Advance Article

Influence of hemicellulose and lignin on the effect of drying of cellulose and the subsequent enzymatic hydrolysis

T. Ao, J. Wu, R. Chandra, H. Zhang, Y. Yuan, Y. Luo, D. Li, C. Liu, S. Renneckar and J. Saddler, Green Chem., 2025, Advance Article , DOI: 10.1039/D5GC02029H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements