A facile phase transformation-mediated mechanochemical assembly strategy facilitates the scale-up synthesis of enzyme@MOF biocomposites†
Abstract
Herein, we present a phase transformation-mediated mechanochemical encapsulation (PTME) strategy for synthesizing enzyme–metal organic framework (enzyme@MOF) biocomposites, which leverages mild mechanical force to drive rapid phase transformation of ZnO into a crystalline MOF, Zn-HHTP. This phase transformation mechanism enables efficient and solvent-minimal enzyme encapsulation under ambient conditions, while the formed Zn-HHTP shows a highly crystalline network with long-range ordered pore channels facilitating catalytic substrate access to encapsulated enzymes. Using lipase as a model enzyme, the resulting biocomposites present higher catalytic activity compared to their well-exploited lipase@ZIF-8 counterpart, which is also synthesized by a traditional mechanochemical approach. Additionally, Zn-HHTP can shield the encapsulated enzymes against environmental stressors, showing enhanced pH- and thermal stability. As the PTME approach only requires 1 min reaction time with the assistance of a trace amount of buffer solution (35 μL), we demonstrate its ability to synthesize highly active biocatalysts on a gram scale. Our work offers a sustainable and rapid mechanochemical method for synthesizing high-performance enzyme@MOF biocomposites, holding great potential for advancing industrial biocatalysis.