Enhancing the selectivity of C2 hydrocarbons over Fe-based catalysts by controlling nitrogen doping in electrocatalytic CO2 reduction†
Abstract
Rational design of cost-effective materials as highly efficient catalysts for the electrochemical CO2 reduction reaction (CO2RR) to produce multi-carbon (C2+) hydrocarbons is highly desirable. Cu-based catalysts are widely recognized as effective for the electrosynthesis of multi-carbon products. Exploration of non-copper-based catalysts for C2+ products is very interesting and challenging. In this work, using ethylenediaminetetraacetic acid disodium salt and ethylenediamine as the ligands and N source, N-doped Fe2O3 catalysts containing FeO1−xNx (0.34 < x < 0.54) sites with and without a FeN4 structure were fabricated. It was found that the catalyst without a FeN4 structure converted CO2 to C2 hydrocarbons (ethane and ethylene). The faradaic efficiency (FE) of C2 products and the current density of C2 products reached 60.8% and 39.1 mA cm−2, respectively, which is currently the best result for non-copper catalysts in an H-cell. However, the FE of the catalyst with a FeN4 structure was much lower when producing C2 products. Detailed study showed that the FeO1−xNx sites with suitable coordination of N with Fe was pivotal to the high FE of C2 products. A combination of experimental and density functional theory studies indicated that the feasible coordination of N with Fe resulted in the deformation of the electron cloud around the Fe nucleus, which facilitated the charge transfer and promoted the production of C2 products. This work provides a successful example of designing non-copper catalysts for producing C2+ products in the CO2RR.