Caffeine-catalyzed synthesis of photopolymers for digital light processing†
Abstract
We report an elastic, degradable, and sustainable thiol–norbornene photopolymer for digital light processing. Caffeine, benign and bio-derived, catalyzes the in-tandem ring-opening reaction of cis-5-norbornene-endo-2,3-dicarboxylic anhydride and propylene oxide by alcohol-terminated polycaprolactone and produces the polymer at a 90 g scale. The synthesis tolerates moisture and adheres to green chemistry principles. The product doesn't require purification; mixing it directly with thiol cross-linkers and photo-additives affords the thiol–norbornene photopolymer. Digital light processing converts the photopolymer into high-fidelity prints with excellent elastic recovery. Printed objects include a 3D aortic arch and branched carotid artery rendered from anonymized patient CT scans and microfluidic devices with patent 3D corkscrew channels. Caffeine-catalysis affords various percentages of alcohol chain end that control the photopolymer's degradation rate. The material demonstrates good biocompatibility in vitro and in a subcutaneous implantation model. The elasticity, biocompatibility, affordability, sustainability, and versatility of this new photopolymer platform will open up new opportunities for sustainable 3D printing materials.

Please wait while we load your content...