Issue 14, 2025

A mediator-free enzyme carbonaceous cathode for bioelectrocatalytic reduction of furfural to furfuryl alcohol

Abstract

The valorisation of biomass derivatives into fine chemicals through the combination of electro-enzymatic catalysis under green chemistry principles holds promising potential. However, bottlenecks, including poor electron transfer efficiency between the electrode surface and electron mediators, inefficient cofactor regeneration, and the high cost of enzymes and electron mediators, continue to hinder practical applications. Herein, to address the abovementioned technical barriers, we proposed an electron mediator-free bioelectrocatalytic system that integrated electrochemical NADH regeneration and enzymatic reactions. The proposed system was based on a novel, orderly assembled composite bioelectrode composed of a conjugated structure of covalent organic frameworks (COFs, namely, TpBD), which encapsulated cofactor-dependent oxidoreductases. The as-prepared composite bioelectrode was further applied to the highly selective hydrogenation of furfural to furfuryl alcohol. Results indicated that the electron pathway involved in the TpBD conjugated structure guaranteed effective cofactor regeneration on the composite bioelectrode without the assistance of costly electron mediators, thereby promoting the enzymatic reduction of furfural. A high furfural conversion of 98.94% was realized, accompanied by remarkable furfuryl alcohol selectivity of 90.13% at −1.4 V (vs. Ag/AgCl). The novel composite bioelectrode also showed good stability and reusability. Up to 88.1% of the original furfuryl alcohol selectivity was preserved after 10 cycles of recycling. This work presents a promising green alternative route for the valorisation of furfural, with great potential for extending to the valorization of other renewable biomass derivatives.

Graphical abstract: A mediator-free enzyme carbonaceous cathode for bioelectrocatalytic reduction of furfural to furfuryl alcohol

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 Jan 2025
Accepted
28 Feb 2025
First published
06 Mar 2025

Green Chem., 2025,27, 3733-3742

A mediator-free enzyme carbonaceous cathode for bioelectrocatalytic reduction of furfural to furfuryl alcohol

S. Zheng, C. Zhang, P. Zhan, X. Liu, H. Shan, Y. Wang, B. Wang, P. Qin, D. Cai and T. Tan, Green Chem., 2025, 27, 3733 DOI: 10.1039/D5GC00168D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements