The interaction between starch and phenolic acids: effects on starch physicochemical properties, digestibility and phenolic acids stability
Abstract
Starch and phenolic acids, two common plant-based food components, can interact to form complexes during food processing, thus improving the functional properties of both starch and phenolic acids. This review provides a comprehensive summary of the effects of the interaction of the two components on the multi-scale structure, and key physicochemical and functional properties of starch, as well as the stability of phenolic acids. The main conclusions are as follows: (i) factors such as starch conformation, specific properties of phenolic acids and experimental conditions influence the extent of starch–phenolic acid interactions; (ii) the formation of the complexes significantly alters the microstructure, crystalline structure and thermal stability of starch; (iii) phenolic acids compete with starch for available free water, thereby altering starch gelatinization. This competition reduces the self-interaction of starch chains and retards the starch retrogradation; (iv) combined phenolic acids alter the structural properties of starch, while free phenolic acids inhibit the activity of digestive enzymes, collectively resulting in decreased starch digestibility; and (v) the thermal stability and biological activity of phenolic acids are closely related to the stability of the structure of starch–phenolic acid complexes. Finally, the review highlights current challenges and future research directions in the study of starch–phenolic acid interactions, aiming to advance the development of starch and phenolic acids in food and industrial applications.