Issue 9, 2025

Protective effects of grape seed procyanidin extract on neurotrophic and muscarinic signaling pathways in the aging neuromuscular junction

Abstract

At the neuromuscular junction (NMJ), which coordinates movement, postsynaptic-derived neurotrophic factors have neuroprotective functions and retrogradely regulate the exocytotic machinery involved in neurotransmitter release. In parallel, presynaptic autocrine muscarinic signaling plays a fundamental modulatory role in this synapse. We previously found that these signaling pathways are impaired in the aged neuromuscular system. In this follow-up study, we investigated an anti-aging strategy using grape seed procyanidin extract (GSPE), a common dietary antioxidant known for its neuroprotective properties in various pathologies, but its effects on the aged neuromuscular system remain unexplored. This study analyses whether GSPE can mitigate age-associated impairments in neurotrophic and muscarinic signaling within the neuromuscular system. We assessed the expression (protein levels) and activation (phosphorylation) of the key proteins in the brain-derived-neurotrophic-factor (BDNF)/neurotrophin 4 (NT-4) and muscarinic pathways in the extensor digitorum longus (EDL) muscles of aged rats, with comparisons to GSPE-treated aged rats and young controls. The results demonstrate that GSPE treatment prevents the most relevant aging-induced changes in neurotrophic and muscarinic receptor isoforms, downstream protein kinases, and their targets in the neurotransmitter exocytotic machinery. Nevertheless, GSPE was less effective at preventing alterations in some other proteins within these pathways, such as calcium channels, and did not modify several other molecules involved in these pathways, which remain unchanged during aging. Overall, this study highlights the neuroprotective potential of GSPE in preventing fundamental age-related molecular changes at the NMJ, which helps improve functionality and may increase the quality of life and lifespan in aged individuals.

Graphical abstract: Protective effects of grape seed procyanidin extract on neurotrophic and muscarinic signaling pathways in the aging neuromuscular junction

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
15 Jan 2025
Accepted
21 Mar 2025
First published
15 Apr 2025
This article is Open Access
Creative Commons BY-NC license

Food Funct., 2025,16, 3575-3590

Protective effects of grape seed procyanidin extract on neurotrophic and muscarinic signaling pathways in the aging neuromuscular junction

M. Balanyà-Segura, A. Polishchuk, L. Just-Borràs, V. Cilleros-Mañé, C. Silvera, M. Jami-ElHirchi, M. Pinent, A. Ardévol, M. Tomàs, M. A. Lanuza, E. Hurtado and J. Tomàs, Food Funct., 2025, 16, 3575 DOI: 10.1039/D5FO00286A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements