Issue 13, 2025

Untargeted metabolomics reveals the inhibition effect of a high-fat diet on colorectal cancer tumorigenesis in obesity-resistant mice via regulating bile acid, glutathione, and glycerophospholipid metabolisms

Abstract

The interplay between high fat intake and cancer is complex and multifaceted. Contradictory results exist between obesity, high-fat diet (HFD), and colorectal cancer (CRC), necessitating further research. In this study, we investigated the effect of HFD on tumorigenesis in obesity-resistant and obesity-susceptible mouse models. Our results revealed that HFD significantly inhibited CRC HCT116 and HT-29 xenograft tumor growth in obesity-resistant BALB/c nude mice in comparison with a low-fat diet (LFD). HFD feeding did not induce increases in body weight, serum pro-inflammatory cytokines, and lipid accumulation in the liver and white adipose tissue (WAT) in nude mice. However, HFD promoted tumor growth in melanoma B16-F10-bearing C57BL/6J mice, accompanied by obesity and increased pro-inflammatory cytokine levels. Untargeted metabolomics showed that HFD induced significantly changed metabolites in serum, tumor, and liver samples of the HCT116 xenograft model. In all samples, many glycerophospholipids (e.g. LysoPE (0:0/20:1) and LysoPC (16:1)) and bile acids (e.g. glycocholic acid and chenodeoxycholic acid) were significantly reduced by HFD. Enrichment and pathway analyses suggested that bile acid biosynthesis and metabolisms of lipids, amino acids, and organic acids were significantly regulated by HFD. Additionally, the glutathione metabolism was significantly downregulated, while the TCA cycle was upregulated by HFD in tumor samples. Moreover, univariate and multivariate analyses on the differential metabolites in tumors suggested that uracil, chenodeoxycholic acid, glutathione, LysoPE (0:0/20:1), and SM (d18:1/18:0) were the main metabolite biomarkers for discrimination between LFD- and HFD-fed xenograft tumors. These findings suggest that HFD elicits an anti-tumorigenic effect against CRC in obesity-resistant BALB/c nude mice via regulating bile acid, glutathione, and glycerophospholipid metabolisms.

Graphical abstract: Untargeted metabolomics reveals the inhibition effect of a high-fat diet on colorectal cancer tumorigenesis in obesity-resistant mice via regulating bile acid, glutathione, and glycerophospholipid metabolisms

Supplementary files

Article information

Article type
Paper
Submitted
11 Dec 2024
Accepted
18 May 2025
First published
17 Jun 2025

Food Funct., 2025,16, 5526-5542

Untargeted metabolomics reveals the inhibition effect of a high-fat diet on colorectal cancer tumorigenesis in obesity-resistant mice via regulating bile acid, glutathione, and glycerophospholipid metabolisms

Q. Cheng, K. Na, C. Xu, H. Peng, X. Lin, J. Chen, Y. Li, D. Wu, M. Du and X. Wang, Food Funct., 2025, 16, 5526 DOI: 10.1039/D4FO06132B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements