Controlled in vitro release of CBD from oleosomes via modulation of their membrane density

Abstract

Oleosomes, native lipid droplets abundant in the plant kingdom, especially in oilseeds, can be extracted in simple steps and have been suggested as lipid carriers or natural substitutes for oil droplets in emulsion-like products for foods, cosmetics and pharmaceuticals. Oleosomes are good candidates as lipid carriers via the oral route due to their limited hydrolysis during gastric digestion and slow hydrolysis in the small intestinal phase. The factors that affect oleosomes’ ability to resist in vitro digestion, particularly the influence of their membrane molecular composition and density, remain unknown. Therefore, oleosome lipid hydrolysis was investigated in a model of small intestinal digestion and compared with oil droplets stabilized by whey proteins and/or phospholipids and with oleosomes having lower membrane density. To showcase that the lipid hydrolysis rate can also affect cargo release, oleosomes were loaded with cannabidiol (CBD) and the CBD release was tracked. Oleosomes exhibited significantly slower lipid digestion than the droplets stabilised by whey proteins and/or phospholipids, which were rapidly digested. The low lipid hydrolysis of oleosomes during intestinal digestion has been attributed to the unique structure of the oleosome membrane proteins, oleosins, which have a long amphipathic helix pinned into the oleosome oil core and out of reach for bile salts and enzymes. Oleosomes with lower membrane density exhibited faster lipid hydrolysis, probably because the digestive enzymes could better adsorb on the interface to access the core lipids. The results elucidate the factors that affect the lipid digestion of oleosomes and demonstrate the dynamic nature of oleosomes for the controlled release of lipophilic cargos, such as CBD, in the intestinal tract.

Graphical abstract: Controlled in vitro release of CBD from oleosomes via modulation of their membrane density

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2024
Accepted
12 May 2025
First published
19 May 2025
This article is Open Access
Creative Commons BY license

Food Funct., 2025, Advance Article

Controlled in vitro release of CBD from oleosomes via modulation of their membrane density

Z. Ma, E. Capuano, J. H. Bitter, R. M. Boom and C. V. Nikiforidis, Food Funct., 2025, Advance Article , DOI: 10.1039/D4FO04171B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements