Issue 4, 2025

Applications of soft matter physics in food science: from molecular interactions to macro-scale food structures

Abstract

Soft matter physics, encompassing materials such as polymers, colloids, emulsions, gels, and foams, provides a powerful framework for understanding the structural and functional complexity of food systems. This review explores the application of soft matter principles in food science, from molecular interactions to macroscopic structuring. The behavior of food materials under various stresses and environmental conditions is governed by key physical principles including thermodynamics, phase transitions, and molecular dynamics. These principles elucidate how protein-polysaccharide networks, colloidal assemblies, and emulsified systems determine food texture, stability, and sensory properties. Rheology, a central tool of soft matter science, enables quantitative analysis of viscoelastic properties, guiding product design, formulation, and processing optimization. Processing techniques such as extrusion, high-pressure processing, and 3D printing are examined through the lens of soft matter behavior, offering precise control over microstructure and texture. Furthermore, the review highlights the emerging integration of artificial intelligence (AI) in modeling and predicting the physicochemical properties of complex food matrices, accelerating innovation and quality control. By bridging molecular–scale interactions with macro-scale material behavior, soft matter physics enables the rational design of functional, sustainable, and consumer-appealing food products. This interdisciplinary perspective not only advances fundamental scientific understanding but also provides practical insights for improving food quality, safety, and personalization. Overall, the review underscores the transformative potential of soft matter physics in shaping the future of food science and engineering.

Graphical abstract: Applications of soft matter physics in food science: from molecular interactions to macro-scale food structures

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
30 Apr 2025
Accepted
05 Jun 2025
First published
06 Jun 2025
This article is Open Access
Creative Commons BY license

Sustainable Food Technol., 2025,3, 979-1004

Applications of soft matter physics in food science: from molecular interactions to macro-scale food structures

S. Pawde and J. Dave, Sustainable Food Technol., 2025, 3, 979 DOI: 10.1039/D5FB00172B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements