Issue 3, 2025

Artificial intelligence-driven innovation in Ganoderma spp.: potentialities of their bioactive compounds as functional foods

Abstract

Ganoderma spp., which are essential decomposers of lignified plant materials, can affect trees in both wild and cultivated settings. These fungi have garnered significant global interest owing to their potential to combat several chronic, complicated, and infectious diseases. As technology progresses, researchers are progressively employing artificial intelligence (AI) for studying various fungal strains. This novel approach has the potential to accelerate the knowledge and application of Ganoderma spp. in the food industry. The development of extensive Ganoderma databases has markedly expedited research on them by enhancing access to information on bioactive components of Ganoderma and promoting collaboration with the food sector. Progress in AI techniques and enhanced database quality have further advanced AI applications in Ganoderma research. Techniques such as machine learning (ML) and deep learning employing various methods, including support vector machines (SVMs), Bayesian networks, artificial neural networks (ANNs), random forests (RFs), and convolutional neural networks (CNNs), are propelling these advancements. Although AI possesses the capacity to transform Ganoderma research by tackling significant difficulties, continuous investment in research, data dissemination, and interdisciplinary collaboration are necessary. AI could facilitate the development of customized functional food products by discerning patterns and correlations in customer data, resulting in more specific and accurate solutions. Thus, the future of AI in Ganoderma research looks auspicious, presenting prospects for ongoing advancement and innovation in this domain.

Graphical abstract: Artificial intelligence-driven innovation in Ganoderma spp.: potentialities of their bioactive compounds as functional foods

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
28 Nov 2024
Accepted
19 Mar 2025
First published
07 Apr 2025
This article is Open Access
Creative Commons BY-NC license

Sustainable Food Technol., 2025,3, 759-775

Artificial intelligence-driven innovation in Ganoderma spp.: potentialities of their bioactive compounds as functional foods

S. Khanal, A. Sharma, M. Pillai, P. Thakur, A. Tapwal, V. Kumar, R. Verma and D. Kumar, Sustainable Food Technol., 2025, 3, 759 DOI: 10.1039/D4FB00357H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements