Carbonylation involving organocopper intermediates
Abstract
Developing economical and environmentally friendly carbonylation synthetic methods is an important and challenging goal. Exploring the application of non-precious metal catalysts in synthetic chemistry has proven to be an ideal choice due to their abundancy, low cost, and low toxicity. In recent years, as copper is one of the cheaper metals, copper catalysts have been widely used in the field of carbonylative transformations. In this review, case-by-case reaction modes and mechanisms are summarized and discussed, along with a personal perspective. Various organocopper intermediates were produced from the single-electron reduction of alkyl halides, capturing radicals from the oxidation of carbon-hydrogen bonds, transmetalation, and active copper species addition to unsaturated bonds (active Cu–H, Cu–Bpin or Cu–Si intermediate), and then, different organocopper intermediates can result from nucleophilic quenching, electrophilic quenching, transmetalation, isomerization to carbene, etc.