Plasmonic gold nanostars conjugated poly(heptazine imide) for photocatalytic H2O2 production from O2 reduction†
Abstract
Recent advances in photocatalytic systems for H2O2 production have led to improvements in both efficiency and selectivity; however, the practical application of current photocatalysts remains limited by low H2O2 production rates, poor long-term stability, and challenges in scalability. In this study, we present a novel photocatalyst based on the integration of gold nanostars (AuNSs) into poly(heptazine imide) (PHI) resulting in a system that is highly efficient for H2O2 production. The resulting AuNSs–PHI catalyst achieved a remarkable H2O2 generation rate of 286.95 mM g−1 h−1 under solar irradiation, utilising O2 reduction coupled with isopropanol oxidation. This enhanced performance is primarily attributed to localized surface plasmon resonance (LSPR) effects from the embedded gold nanostars, which significantly boost light absorption and charge separation efficiency. The critical role of the optimized nanostructure was further validated through time-dependent density functional theory (TDDFT) calculations on a gold cluster (Au20) adsorbed onto PHI, providing theoretical insight into the observed experimental H2O2 production enhancement. These findings demonstrate the potential of plasmon-enhanced photocatalysis as a viable pathway for sustainable and scalable H2O2 production.